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Abstract 

The quantitative deconvolution of 1D NMR spectra into individual resonances or peaks is a key 

step in many modern NMR workflows as it critically affects downstream analysis and 

interpretation. Depending on the complexity of the NMR spectrum, spectral deconvolution can 

be a notable challenging. Based on the recent deep neural network DEEP Picker and Voigt Fitter 5	

for 2D NMR spectral deconvolution, we present here an accurate, fully automated solution for 

1D NMR spectral analysis, including peak picking, fitting, and reconstruction. The method is 

demonstrated for complex 1D solution NMR spectra showing excellent performance also for 

spectral regions with multiple strong overlaps and a large dynamic range whose analysis is 

challenging for current computational methods. The new tool will help streamline 1D NMR 10	

spectral analysis for a wide range of applications and expand their reach toward ever more 

complex molecular systems and their mixtures.   

 

Keywords: NMR spectral analysis, complex NMR spectra, spectral overlap, machine learning, 

deep neural network, peak picking, DEEP Picker, peak fitting, lineshape fitting, spectral 15	

reconstruction.   
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1. Introduction 

One of the major strengths of nuclear magnetic resonance (NMR) spectroscopy is its broad 

applicability to a vast range of molecular systems in solution or in the solid state. Because the 20	

nuclei of many atoms in molecules are NMR-active, such as hydrogen atoms, the information 

content of NMR spectra is uniquely rich allowing studies of molecular composition, interactions, 

structure and dynamics at atomic detail. Due to its quantitative nature, NMR is also highly 

suitable for the analysis of molecular mixtures for component identification and quantification 

with application in metabolomics (Markley et al., 2017) and for monitoring of industrial 25	

chemical and biochemical processes (Wang et al., 2021).  

Despite enormous methodological progress made over many decades of NMR research 

that have resulted in a vast collection of different NMR experiments, in many NMR facilities the 

most popular choice remains the standard one-dimensional (1D) 1H proton NMR experiment. 

This is the result of several factors, such as good sensitivity, short measurement time (potentially 30	

associated with a low user fee), straightforward processing, and easy and dependable 

implementation on different types of NMR spectrometers. However, due to the richness of the 

resulting 1H NMR spectrum in many samples, it is prone to various amounts of spectral overlaps, 

which is the overlap of two or more resonances, rendering the identification and quantification of 

the underlying resonances challenging (Giraudeau, 2017).  35	

Because the first step of the analysis of almost every NMR spectrum consists of the 

identification of the individual resonances, spectral crowding often makes the process incomplete, 

ambiguous or even impossible. For many years, spectral analysis is being routinely assisted by 

computer software to perform useful tasks like peak-picking and peak integration thereby 

speeding up the analysis process by supporting human experts during this process (Nelson and 40	
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Brown, 1989; Martin, 1994; Cobas et al., 2013). A number of commercial general purpose 

software packages are available for the analysis of 1D 1H NMR spectra such as the ACD/NMR 

workbook suite (https://www.acdlabs.com/), the AMIX software (https://www.bruker.com), the 

Chenomx NMR suite (https://www.chenomx.com), and MNova NMR  

(https://www.mestrelab.com). Recent developments in NMR-based metabolomics, which 45	

oftentimes involve highly complex 1H NMR spectra, has led to a proliferation of academic 

software for the (semi-)automated analysis of such spectra, including MetaboLab (Ludwig and 

Gunther, 2011), BATMAN (Hao et al., 2014), Bayesil (Ravanbakhsh et al., 2015), AQuA 

(Rohnisch et al., 2018), ASICS (Lefort et al., 2019), rDolphin (Canueto et al., 2018) and 

MetaboDecon1D (Hackl et al., 2021). Some of these programs are suitable for untargeted 50	

compound identification whereas others only map those spectral features that are contained in a 

pre-defined metabolite spectral database.  

For a fully quantitative spectral analysis, numerical lineshape fitting has become the 

method of choice using a parametric representation of each resonance in the spectrum 

(Higinbotham and Marshall, 2001; Smith, 2017; Sokolenko et al., 2019). Commonly used 55	

lineshapes are Lorentzian, Gaussian, and Voigt profiles that may explicitly include truncation or 

apodization effects, such as sinc wiggles (Dudley et al., 2020). Because essentially all fitting 

software rely on a local non-linear least squares minimization between the model and the 

experimental spectrum, such as a Levenberg-Marquardt minimizer, accurate line position and 

linewidth for each resonance as input parameters is of paramount importance. Because such 60	

information is hard to obtain by automated computational approaches alone, lineshape fitting 

often requires significant interactive intervention by a human expert. This applies in particular to 

spectral regions with significant peak overlap manifested, for example, by one or several 
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shoulder peaks and a large dynamic range. Although sophisticated mathematical peak picking 

algorithms have been developed that identify realistic peak positions (Cobas et al., 2013), they 65	

work best for well-resolved peaks or peaks with moderate overlap, but tend to fail in the case of 

strong overlaps and overlaps involving three or more peaks.  

Recent applications of machine-learning methods, in particular of deep neural networks 

(DNN), have shown qualitative progress in the ability to deconvolute complex multidimensional 

NMR spectra (Li et al., 2022b). In the case of “DEEP Picker”, training was exclusively based on 70	

a library containing 5000 synthetic 1D test spectra consisting of 3 to 9 individual Voigt-shaped 

peaks with random amplitudes and positions amounting to a collection of training spectra with a 

wide range of spectral overlap (Li et al., 2021). The algorithm was then generalized to two-

dimensional (2D) NMR spectra as encountered in many protein NMR and metabolomics 

applications.  75	

In the present work, we introduce DEEP Picker for untargeted applications to complex 

1D NMR spectra, including complex biological mixtures. The deconvolution power of “DEEP 

Picker1D” is demonstrated for spectra with various amounts of overlap and how it can be paired 

with the non-linear least squares fitting software “Voigt Fitter1D” for a fully quantitative 

deconvolution of the input spectra. The computer codes of DEEP Picker1D and Voigt Fitter1D 80	

are made publicly available.  

 

 

 

 85	
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Materials and Methods 

Sample Preparation 

Glucose sample. 2 mM glucose (from Sigma-Aldrich) was prepared in D2O before 600 µL were 

transferred to a 5 mm NMR tube for NMR data collection. 

Mouse urine sample. Frozen mouse urine sample was thawed on ice. An aliquot of 178 µl 90	

mouse urine was mixed with 20 µl sodium phosphate buffer (500 mM) in D2O and 2 µl DSS 

(4,4-dimethyl-4-silapentane-1-sulfonic acid from 10 mM stock solution prepared in D2O) with a 

final pH of 7.4. 200 µl of the final sample was transferred to a 3 mm NMR tube for NMR data 

collection. 

 95	

NMR Experiments and Processing 

All NMR spectra were collected at 298 K on Bruker AVANCE III HD 850 MHz spectrometers 

equipped with a cryogenically cooled TCI probe. A 1D 1H NOESY glucose spectrum was 

recorded with a total of 32768 complex data points and 64 scans. Relaxation delay between 

consecutive scans was 12 s, the spectral width was 13 ppm, and the transmitter frequency offset 100	

was set to 4.7 ppm. NMR data was zero-filled four-fold, apodized using a cosine squared 

window function, Fourier-transformed, and phase-corrected using Bruker Topspin 4 software.  

1D 1H mouse urine spectrum was recorded with the Bruker standard pulse sequence 

“zgesgppe” with a total of 53190 complex data points and 64 scans. The relaxation delay 

between consecutive scans was 4 s. The spectral width was 25 ppm with the transmitter 105	

frequency offset set to 4.7 ppm. The NMR free induction decay was zero-filled two-fold, 
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apodized using a 2π-Kaiser window function, Fourier-transformed, and phase-corrected using 

NMRPipe (Delaglio et al., 1995).  

A 2D 13C-1H high resolution HSQC spectrum of mouse urine was recorded with Bruker 

pulse program “hsqcetgpsisp2.2”, 3072 total complex data points in the 1H t2 dimension and 512 110	

total complex points in the 13C t1 dimension were recorded. For each t1 increment 16 scans were 

recorded and the relaxation delay between consecutive scans was set to 1.5 s. The spectral widths 

along the 1H and 13C dimensions were 18 ppm and 185 ppm, respectively. The transmitter 

frequency offsets were 4.7 ppm and 82.5 ppm, respectively. NMR data was zero-filled eight-fold 

in both dimensions, apodized using a 2π-Kaiser window function, Fourier-transformed, and 115	

phase-corrected using NMRPipe (Delaglio et al., 1995).  

 

Deep neural network DEEP Picker1D and Voigt Fitter 

DEEP Picker1D is a deep neural network that was trained on a library of 5000 synthetic 1D 

NMR spectra containing between 3 and 9 peaks with Voigt lineshape and variable amounts of 120	

overlaps (Li et al., 2021). In the original work, DEEP Picker was specifically adapted for the 

analysis of 2D NMR spectra and subsequently combined with the Voigt Fitter software for the 

quantitative analysis of 2D NMR metabolomics spectra either as standalone software or 

incorporated in the public web server COLMARq (Li et al., 2022a). Briefly, DEEP Picker1D is a 

convolutional neural network, which was trained using TensorFlow v1.3 (Abadi et al., 125	

2016), taking an 1D spectrum as input. It contains 7 hidden convolutional layers, 1 hidden max-

pooling layer, and two parallel output layers with a total of 8037 trainable parameters. A 

convolutional output classifier layer with SoftMax activation classifies every input data point by 

https://doi.org/10.5194/mr-2022-21

DiscussionsO
pe

n 
A
cc

es
s

Preprint. Discussion started: 15 November 2022
c© Author(s) 2022. CC BY 4.0 License.



	

	
8 

assigning an individual score for three peak classes (main peaks = class 2, shoulder peaks = class 

1, no peak = 0). The class with the maximal score is then chosen as the predicted class with the 130	

numerical score as a quantitative measure of confidence of the predicted class for each data point 

of the input spectrum. For any data point predicted to be a peak (class 2 or 1), DEEP Picker1D 

also predicts the sub-pixel peak position relative to the on-grid points, peak amplitude, peak 

width, and the Lorentzian vs. Gaussian components to the Voigt shape using a convolutional 

output regressor layer. Although DEEP Picker1D is a rather accurate predictor of peak 135	

parameters in its own right, these values can be further refined by the Voigt Fitter1D software by 

performing a non-linear least square fit of the original input 1D spectrum in terms of Voigt peak 

shapes using the DEEP Picker1D output peak parameters as input. Voigt Fitter1D is essentially a 

1D version of the 2D Voigt Fitter software published previously (Li et al., 2022a). DEEP 

Picker1D paired with Voigt Fitter1D results in a fully quantitative representation of the input 1D 140	

NMR spectrum in terms of a finite set of 1D Voigt-shaped peaks.   

 The input spectrum for DEEP Picker1D needs to be pre-processed in standard fashion, 

including phase correction, baseline correction, zero filling, apodization and Fourier 

transformation. DEEP Picker1D contains two models whereby model 1 (model 2) has optimal 

performance when the digital resolution is sufficiently high around 12 (8) points per peak (PPP). 145	

Deep Picker1D performs best for peaks with a moderate to high signal-to-noise ratio (S/N) and 

lineshapes that closely follow Voigt profiles with a S/N > 10 where the noise level is defined as 

the standard deviation of the spectrum in a peak-free region. In the presence of significant 

amounts of noise, nonnegligible line shape distortion, such as those caused by temperature 

fluctuations or suboptimal shimming during data collection, Deep Picker1D may pick some false 150	

peaks, for example, by interpreting lineshape distortions as shoulder peaks. Voigt Fitter1D has 
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built-in tools to remove spectral features from its peak list when one of the following situations 

occurs: (i) a fitted peak is too wide, i.e., the peak width is larger than the fitting region, or it 

becomes too narrow, i.e. the peak width is less than 1 point; (ii) a fitted peak strongly overlaps 

with another peak so that merging of two peaks into a single peak causes a minimal change of 155	

the fitting error. Deep Picker1D and Voigt Fitter1D together provide a self-sufficient spectral 

analysis tool set for the complete deconvolution of 1D spectra into individual peaks. Peak 

parameters, such as peak position, peak height and peak volume can then be directly used for 

downstream analysis, such as compound identification and quantitative NMR applications 

(qNMR). Because error estimation is an important part of any quantitative data analysis, Monte 160	

Carlo-based error propagation is implemented in Voigt Fitter1D as an option. It performs 

repetitive fitting of the reconstructed spectrum after adding random noise with the same standard 

deviation as that of the experimental input spectrum for each round of fitting. The output from 

this error estimation procedure contains the fitting parameters from each round from which the 

uncertainty of each peak parameter is obtained.  165	

 

 

 

 

 170	
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4. Results 

DEEP Picker1D and Voigt Fitter1D performance is first demonstrated for glucose in D2O 

(Figure 1). 175	

 

 

 

Figure 1. Demonstration of DEEP Picker and Voigt Fitter 1D for selected regions of 1D 1H 
spectrum of glucose. (A), (C), (E): Experimental and reconstructed spectra are depicted in black 
lines and red dots, respectively. Deconvoluted individual peaks are depicted as blue lines. (B), 
(D), (F): Simulated spectra including strong coupling effects based on chemical shift and scalar-
coupling spin Hamiltonian with parameters taken from GISSMO website at the same B0 field 
strength (850 MHz 1H frequency) as in the experiments. Transverse R2 relaxation rates were 
uniformly set to a low value of 0.6 s-1 to obtain a very high-resolution spectrum for better 
comparison with DEEP Picker. Pairs of panels (A, B), (C, D), (E, F) show the same 1D spectral 
regions. DEEP Picker and Voigt Fitter 1D correctly deconvoluted the experimental spectra for 
both simple regions (A) and more complex regions (C and E). Few peaks cannot be 
deconvoluted because of strong spectral overlap, such as the small peak around 3.717 ppm in (D) 
and the peak around 3.823 ppm in (F). The deconvolution by DEEP Picker1D was performed 
with model 2 with a PPP of 9.  
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Because glucose populates two non-equivalent isomers α-glucose and β-glucose with different 

relative populations that interconvert on a slow time scale and displays strong coupling effects 

even at high magnetic field, the deconvolution of its 1D 1H NMR spectrum is notoriously 180	

difficult. Figure 1 shows selected regions of the 1D 1H NMR glucose spectrum with variable 

amounts of peak overlap. The experimental spectra (black) along with the deconvolution results 

(blue) are shown in the left column (Panels A, C, E). The right column (Panels B, D, F) shows 

the corresponding spectral regions derived from quantum-mechanical spin simulations using 

chemical shifts and scalar J-couplings obtained from the GISSMO library (Dashti et al., 2018). 185	

An artificially slow, uniform transverse R2 relaxation rate of 0.6 s-1 was applied to the simulated 

free induction decays (FID) so that after Fourier transformation, the resulting spectrum has sharp 

lines for easy recognition of the individual peaks and for the comparison with the automated 

deconvolution results. Figure 1A starts out with a symmetric doublet centered at 5.223 ppm, 

which is accurately picked and fitted by DEEP Picker1D and Voigt Fitter1D in agreement with 190	

the simulation results in Figure 1B. Figure 1C,D shows a triplet centered around 3.705 ppm 

whereby the strong central peak overlaps with two much smaller peaks on each side, which are 

correctly picked and fitted. According to the simulation, there is another small peak around 3.718 

ppm, which however strongly overlaps with a much stronger peak at 3.716 ppm and therefore 

could not be identified by DEEP Picker1D. This small peak also cannot be discerned by visual 195	

inspection (note that the small J-splitting of the small peak in the simulated spectrum of Figure 

1D are not resolved in the experimental spectrum of Figure 1C). The most complex region of 

the glucose spectrum (3.81 – 3.85 ppm) is depicted in Figure 1E along with its deconvolution, 

which is in very good agreement with the simulated peaks (Figure 1F). The neural network does 
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a remarkable job in identifying the small peak at 3.838 ppm, which only gives rise to a very faint 200	

shoulder peak of its down-field shifted larger neighbor. The broad, somewhat oddly shaped 

spectral feature from 3.82 to 3.83 ppm in the experiment is deconvoluted into 4 individual peaks 

whereby the small peak found in the simulation at 3.823 ppm was not deconvoluted by DEEP 

Picker1D because it overlaps too closely with the main peak at 3.824 ppm. This is consistent 

with the general rule that two peaks whose positions differ within their linewidths are hard to 205	

deconvolute, especially when their amplitudes significantly differ from each other.  

 

Figure 2. Application of DEEP Picker and Voigt Fitter 1D to selected regions of 1D spectra, 
which were generated by adding two selected traces along direct 1H dimension from 
experimental 2D 13C-1H HSQC of mouse urine sample.  (A), (C), (E): Experimental and 
reconstructed spectra are depicted as black lines and red dots, respectively. Deconvoluted 
individual peaks are depicted as blue lines. (B), (D), (F): The two HSQC traces and their sum are 
depicted as purple, cyan, and black lines, respectively. Pairs of panels (A, B), (C, D), and (E, F) 
show the same 1D spectral regions for comparison. The deconvolution by DEEP Picker1D was 
performed with model 1 with a PPP of 12.  
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 It can be hard to assess the deconvolution accuracy of experimental spectra, since the 

ground truth, i.e. the individual isolated peaks and their parameters, are often unknown. For this 

reason, we constructed experimental spectra with overlaps from resolved spectra by co-adding 

traces of a 13C-1H HSQC spectrum of mouse urine along the direct 1H detection dimension at a 210	

fixed 13C chemical shift. Selected examples of overlapping peaks, both in isolation and as a 

superposition, are shown in Figure 2. The left column (Panels A, C, E) shows the experimental 

superpositions (black) together with their deconvolution (blue) and the full spectral 

reconstruction (red), which can be directly compared with the individual traces (purple and cyan) 

in the right column (Panels B, D, F). Figure 2A,B shows two strongly overlapped peaks of 215	

different amplitude giving rise to a sum peak with a noticeable protrusion on its right flank, 

which are accurately deconvoluted and fitted by DEEP Picker1D and Voigt Fitter1D. Figure 

2C,D shows a similar scenario, except that the amplitude ratio of the two peaks is around 35:1, 

which is much larger than in Panels A,B. Again, deconvolution was achieved with high accuracy. 

Figure 2E,F demonstrate the deconvolution capacity for a challenging case of 4 moderately to 220	

strongly overlapped peaks. Although the peak at 3.139 ppm is wedged between two stronger 

peaks, it is successfully extracted by the peak picking and fitting algorithms. The final example 

(Figure 3) shows a region of the mouse urine spectrum (black) along with the deconvolution 

(blue) and reconstruction result. The algorithm deconvolutes the spectrum by identifying not 

only the main peaks, but also all the minor peaks, including the peak at 7.809 ppm with 225	

confidence demonstrating the potential of the proposed deconvolution method in practice when 

encountering spectra with highly overlapped regions, such as those routinely collected for urine 

and other complex biofluids in the context of metabolomics.  
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Figure 3. Application of DEEP Picker and Voigt Fitter 1D to a spectral region of 1D 1H 
spectrum of mouse urine. Experimental and reconstructed spectra are depicted as black lines and 
red dots, respectively. Deconvoluted individual peaks are depicted as blue lines. The 
deconvolution by DEEP Picker1D was performed with model 2 with a PPP of 8.  

 

4. Discussion and Conclusion 

In the vast majority of modern NMR applications, one of most critical steps in NMR spectral 230	

analysis is the identification of individual peaks along with their quantitative parametrization by 

lineshape fitting. The result of this procedure often dictates the usefulness, and ultimately the 

success, of the collected experiment. Traditional peak picking methods rely on clearly defined 

mathematical criteria, such as the properties of the 1st and 2nd derivative of the spectrum, to 

identify individual peaks. These criteria are often too rigid to deal with spectral overlap scenarios 235	

encountered in practice. After proper training, a deep neural network like DEEP Picker1D, on 

the other hand, has a stunning ability to track major and minor spectral features surpassing the 

capacity of most human NMR practitioners. Through the combination of advanced machine-
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learning by the convolutional deep neural network DEEP Picker1D and a peak fitting routine 

Voigt Fitter1D, it was demonstrated how 1D NMR spectral features of variable complexity can 240	

be deconvoluted into individual resonances in a reliable and accurate manner. The success rate of 

the method depends on the quality of spectra that can be affected by sample preparation, NMR 

data acquisition, and pre-processing. This concerns the elimination or suppression of the solvent 

signal or of a prominent background caused, for example, by the presence of a macromolecular 

matrix in the sample. Although apodization, zero-filling, phase and baseline correction are 245	

standard steps during data processing, they need to be applied judiciously to prevent suboptimal 

performance of spectral deconvolution and fitting. Phase errors of up to about 3o can be tolerated 

but for larger phase distortions, DEEP Picker1D may interpret asymmetries in the peak shapes as 

shoulder peaks. Similarly, poor shimming of higher order shims, especially z2 and z4, can lead to 

systematic peak asymmetries across the spectrum, which DEEP Picker1D may interpret as 250	

shoulder peaks. In order to accurately recognize peak shapes DEEP Picker1D requires an 

adequate digital resolution, which is around 8 or 12 points across a single peak, depending also 

on the chosen DEEP Picker1D model. If needed, lower resolution spectra can be easily subjected 

to appropriated zero-filling to meet this criterion. Peak shapes should follow in good 

approximation Voigt profiles, which can be achieved by the application of common window 255	

functions as those described for the processing of the spectra in this work (cosine-squared and 

2π-Kaiser window functions, see Materials and Methods section). As discussed previously (Li et 

al., 2022a), the computational time of Voigt Fitter1D scales linearly with the number of peaks, 

allowing rapid fitting of complex 1D spectra with even thousands of peaks. The fitting of the 1D 

mouse urine spectrum with a total of 4500 Voigt shaped peaks took about 1 minute on a standard 260	

desktop computer. Like all nonlinear optimization software, Voigt Fitter1D cannot guarantee that 
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the final solution is the global χ2 minimum. Therefore, a nearly complete list of high-quality 

initial peaks returned by DEEP Picker1D that match the ground truth as closely as possible is key 

for the success of Voigt Fitter 1D. 

A surge in metabolomics research over recent years has spurred the development of 265	

advanced quantitative tools for the analysis of complex NMR spectra both for 1D and 2D spectra. 

Some metabolomics software (Hao et al., 2014; Ravanbakhsh et al., 2015) are specifically geared 

toward the quantification of specific metabolites with known reference spectra, limiting their 

application to specific samples only, such as serum. In the case of DEEP Picker1D and Voigt 

Fitter1D, the analysis is performed in a fully untargeted manner, i.e. without any molecular 270	

spectral templates, allowing its application to essentially any NMR spectrum that consists of 

resonances with Voigt lineshapes. The deconvolution results can then be further analyzed for 

example by querying against a spectral database or for quantitation of mixture component 

concentrations. In the case of a cohort of samples, the Voigt Fitter1D results can be used for 

univariate or multivariate statistical analysis for the assessment of statistically significant 275	

differences between cohorts. The DEEP Picker1D and Voigt Fitter1D software can also be 

applied to a pseudo-2D series of 1D spectra for the extraction of longitudinal R1, transverse R2 

relaxation parameters or translational diffusion constants by diffusion-ordered NMR (Johnson, 

1999). The unique strength of the combination of DEEP Picker1D with Voigt Fitter1D is their 

ability to accurately deconvolute and reconstruct NMR spectra of generic origin ranging from 280	

well-resolved to highly crowded, which should fulfill the growing needs in a wide range of 

contemporary NMR applications.      
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Code availability  285	

The 1D version of DEEP Picker and Voigt Fitter are implemented in C/C++ and are now part of 

the DEEP Picker package, which is freely available from https://github.com/lidawei1975/deep 

under the GNU General Public License Agreement. They can also be accessed conveniently as a 

web server at https://spin.ccic.osu.edu/index.php/deep1d, which in addition provides an intuitive 

interactive interface for the visual inspection of the results.  290	
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